334 research outputs found

    Dynamic Monopolies in Colored Tori

    Full text link
    The {\em information diffusion} has been modeled as the spread of an information within a group through a process of social influence, where the diffusion is driven by the so called {\em influential network}. Such a process, which has been intensively studied under the name of {\em viral marketing}, has the goal to select an initial good set of individuals that will promote a new idea (or message) by spreading the "rumor" within the entire social network through the word-of-mouth. Several studies used the {\em linear threshold model} where the group is represented by a graph, nodes have two possible states (active, non-active), and the threshold triggering the adoption (activation) of a new idea to a node is given by the number of the active neighbors. The problem of detecting in a graph the presence of the minimal number of nodes that will be able to activate the entire network is called {\em target set selection} (TSS). In this paper we extend TSS by allowing nodes to have more than two colors. The multicolored version of the TSS can be described as follows: let GG be a torus where every node is assigned a color from a finite set of colors. At each local time step, each node can recolor itself, depending on the local configurations, with the color held by the majority of its neighbors. We study the initial distributions of colors leading the system to a monochromatic configuration of color kk, focusing on the minimum number of initial kk-colored nodes. We conclude the paper by providing the time complexity to achieve the monochromatic configuration

    Multicolored Dynamos on Toroidal Meshes

    Full text link
    Detecting on a graph the presence of the minimum number of nodes (target set) that will be able to "activate" a prescribed number of vertices in the graph is called the target set selection problem (TSS) proposed by Kempe, Kleinberg, and Tardos. In TSS's settings, nodes have two possible states (active or non-active) and the threshold triggering the activation of a node is given by the number of its active neighbors. Dealing with fault tolerance in a majority based system the two possible states are used to denote faulty or non-faulty nodes, and the threshold is given by the state of the majority of neighbors. Here, the major effort was in determining the distribution of initial faults leading the entire system to a faulty behavior. Such an activation pattern, also known as dynamic monopoly (or shortly dynamo), was introduced by Peleg in 1996. In this paper we extend the TSS problem's settings by representing nodes' states with a "multicolored" set. The extended version of the problem can be described as follows: let G be a simple connected graph where every node is assigned a color from a finite ordered set C = {1, . . ., k} of colors. At each local time step, each node can recolor itself, depending on the local configurations, with the color held by the majority of its neighbors. Given G, we study the initial distributions of colors leading the system to a k monochromatic configuration in toroidal meshes, focusing on the minimum number of initial k-colored nodes. We find upper and lower bounds to the size of a dynamo, and then special classes of dynamos, outlined by means of a new approach based on recoloring patterns, are characterized

    Reconstruction of discrete sets from two or more X-rays in any direction

    Get PDF
    rendu obsolète par http://hal.ccsd.cnrs.fr/ccsd-00023033During the workshop entitled "Discrete Tomography", held in Volkrange on March 22, 1999, A. Kuba presented the open problem of reconstructing discrete sets satisfying the properties of connectivity and convexity by projections taken along many directions. In this paper, we study this problem, considering a similar property of discrete sets: the Q-convexity. In fact this property contains a certain kind of connectivity and convexity. The main result of this paper is a polynomial-time algorithm which is able to reconstruct Q-convex sets from their projections, when the directions of the projections and the ones of the Q-convexity are the same. Moreover, the algorithm works for any finite number of directions

    Approximate X-rays reconstruction of special lattice sets

    Get PDF
    Sometimes the inaccuracy of the measurements of the X-rays can give rise to an inconsistent reconstruction problem. In this paper we address the problem of reconstructing special lattice sets in Z2 from their approximate X-rays in a finite number of prescribed lattice directions. The class of "strongly Q-convex sets" is taken into consideration and a polynomial time algorithm for reconstructing members of that class with line sums having possibly some bounded differences with the given X-ray values is provided. In particular, when these differences are zero, the algorithm exactly reconstructs any set. As a result, this algorithm can also be used to reconstruct convex subsets of Z2 from their exact X-rays in a finite set of suitable prescribed lattice directions

    Ghosts in Discrete Tomography

    Get PDF

    PARPST: a PARallel algorithm to find peptide sequence tags

    Get PDF
    Background: Protein identification is one of the most challenging problems in proteomics. Tandem mass spectrometry provides an important tool to handle the protein identification problem. Results: We developed a work-efficient parallel algorithm for the peptide sequence tag problem. The algorithm runs on the concurrent-read, exclusive-write PRAM in O(n) time using log n processors, where n is the number of mass peaks in the spectrum. The algorithm is able to find all the sequence tags having score greater than a parameter or all the sequence tags of maximum length. Our tests on 1507 spectra in the Open Proteomics Database shown that our algorithm is efficient and effective since achieves comparable results to other methods. Conclusions: The proposed algorithm can be used to speed up the database searching or to identify post-translational modifications, comparing the homology of the sequence tags found with the sequences in the biological database

    A parallel algorithm for de novo peptide sequencing

    Get PDF
    Protein identification is a main problem in proteomics,the large-scale analysis of proteins. Tandem mass spec-trometry (MS/MS) provides an important tool to handleprotein identification problem. Indeed the spectrometeris capable of ionizing a mixture of peptides, essentiallyseveral copies of the same unknown peptide, dissociatingevery molecule into two fragments called complementaryions, and measuring the mass/charge ratios of the pep-tides and of their fragments. These measures are visualizedas mass peaks in a mass spectrum.There are two fundamental approaches to interpret thespectra. The first approach is to search in a database tofind the peptides that match the MS/MS spectra. This data-base search approach is effective for known proteins, butdoes not permit to detect novel proteins. This second taskcan be dealt with the de novo sequencing that computesthe amino acid sequence of the peptides directly fromtheir MS/MS spectra.In the de novo sequencing problem one knows the pep-tide mas

    Dissecting Adaptation Mechanisms to Contrasting Solar Irradiance in the Mediterranean Shrub Cistus incanus

    Get PDF
    Molecular mechanisms that are the base of the strategies adopted by Mediterranean plants to cope with the challenges imposed by limited or excessive solar radiation during the summer season have received limited attention. In our study, conducted on C. incanus plants growing in the shade or in full sunlight, we performed measurements of relevant physiological traits, such as leaf water potential, gas exchange and PSII photochemistry, RNA-Seq with de-novo assembly, and the analysis of differentially expressed genes. We also identified and quantified photosynthetic pigments, abscisic acid, and flavonoids. Here, we show major mechanisms regulating light perception and signaling which, in turn, sustain the shade avoidance syndrome displayed by the ‘sun loving’ C. incanus. We offer clear evidence of the detrimental effects of excessive light on both the assembly and the stability of PSII, and the activation of a suite of both repair and effective antioxidant mechanisms in sun-adapted leaves. For instance, our study supports the view of major antioxidant functions of zeaxanthin in sunny plants concomitantly challenged by severe drought stress. Finally, our study confirms the multiple functions served by flavonoids, both flavonols and flavanols, in the adaptive mechanisms of plants to the environmental pressures associated to Mediterranean climate

    Cystic Echinococcosis: Chronic, Complex, and Still Neglected

    Get PDF
    Cystic echinococcosis is a most clinically neglected parasitic disease that urgently needs attention. A valuable tool for diagnosing, staging, and following up patients, ultrasound, is readily available. Four management procedures, surgery, percutaneous sterilization techniques, anti-parasitic treatment, and watch & wait, have ‘‘evolved’’ over decades, and been recently summarized, but without adequate comparative evaluation of efficacy, effectiveness, rate of adverse events, relapse rates, and cost. Clinical decision making is on even shakier ground for extrahepatic and extrapulmonary locations, which are rarer and numbers needed to build comparative trials hard to come by. There is an obligation to put at least what we have on an appropriate evidence base by conducting comparative clinical trials at the scale and quality that allow answering these important questions. As one of the expected results, clear criteria for the watch & wait option alone might already save a substantial proportion of patients from unnecessary interventions and save health services money. Difficult chronic diseases clustering in poor rural areas need intelligent, creative approaches, and this one urgently needs operational research incorporating the particularities of resource- poor settings into consideration

    PET/CT Imaging in Mouse Models of Myocardial Ischemia

    Get PDF
    Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT), high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET) allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing
    corecore